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Based on the model concepts of destruction of the substance of a celestial body in the shock wave initiated
by a strong explosion of weak penetration, the radius of the destroyed region, the ejected mass, and the recoil
momentum have been evaluated. The values of the charges necessary for destroying completely bodies of dif-
ferent size and composition or withdrawing bodies from the Earth for a required distance have been deter-
mined. The efficiencies of the explosion and sublimation methods of changing orbits for the case where the
hazardous bodies are comets have been compared. Problems on improving the efficiency of the explosion
method of action on a hazardous body due to the high relative velocity of impact of this body with the
charge-carrying rocket have been discussed.

Introduction. Small planets (asteroids) and comets approaching the Earth represent a real hazard as possible
sources of regional and, at worst, global disasters [1]. A strong explosion is the most efficient method of diminishing
the hazard [2] in the case of late detection (in the near "reaches" of the Earth) of hazardous space objects (HSOs).
The required charge power may prove to be extremely high for complete destruction of a large body; therefore, it
seems more advantageous to transfer it to a "safe" trajectory using explosion action. The physical processes with al-
lowance, for example, for the radiant transfer in the evaporated substance of an HSO and for its real equation of state
can, apparently, be modeled most accurately using only numerical methods [3–5]. Below, we determine the conditions
of explosion action on an HSO that are necessary for withdrawing the body or destroying it: the value of the charge,
the range of action, etc. Analogously to [6, 7], where the computational formulas for determining the values of the en-
ergy release, the radius of the region destroyed, and the withdrawal of a hazardous body from the Earth have been
obtained, below we use model concepts developed in [8–11].

Formulation of the Problem. In most formulations of problems on explosion action on an HSO, one disre-
gards the influence of the relative velocity of a charge and this body on the parameters of a shock wave propagating
in it and causing destruction. The efficiency of the action is improved if the charge is delivered to the HSO by special
rockets with a high relative velocity. Therefore, it seems of interest to evaluate the influence of this velocity on the
parameters of the shock wave and hence on the efficiency of energy release in explosion. These evaluations are given
below, and preliminary data on this problem are contained in [12]. It is noteworthy that not only are the problems
mentioned important for the problem of asteroid-comet hazard but they are also topical from a purely cosmogonical
viewpoint, since explosions and collisions between celestial bodies occur in space at all times.

We will assume that before the explosion at the instant t = 0 the HSO has the shape of a sphere and moves
toward the Earth with velocity V0 along a straight line (Fig. 1) connecting the centers of mass (points O and A) the
distance between which is r0. Clearly, such a straight trajectory is the least favorable from the viewpoint of the value
of the charge necessary for deflecting the HSO.

We will assume that the vector of the explosion force F applied to the HSO at an angle ψ to r0 passes
through the center of the body, so that the torque is absent, and the disturbed trajectory lies in the plane formed by
the vectors r0 and F. For the sake of convenience, we thereafter use two coordinate systems: a Cartesian system (x,
y) with the X axis passing, at the instant of explosion, through the HSO center, i.e., coincident with the vector r0 in
direction, at the step of explosion (first step), and a polar system (r, ϕ), in which the angle ϕ is counted off from the
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indicated direction r0, at the step of passive motion (second step). We preliminarily consider the case of collision (in
the absence of explosion).

Problem on Collision. In general form, the problem is described by the equations
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where µ = γME; for the straight motion we have
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; therefore, the solution of the problem corresponds to motion along a degenerate hyperbola

for which, integrating (1) and (2), we can obtain, with account for (3) and (4), a relationship between the dimension-
less coordinate and time:
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where t
_
 = t ⁄ t0, r

_
 = r ⁄ r0, t0 = r0

 ⁄ V0, and δ = a ⁄ r0 = (α − 1)−1; α = µ ⁄ h is the value of the large semiaxis of the
degenerate hyperbola. Disregarding the radius of the Earth compared to the initial distance to the HSO, we obtain
from (5) the total dimensionless time of flight of the body before the collision:
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Fig. 1. Diagrams of initial (1) and disturbed (2) motion of an HSO (explosion
action on the HSO at point A); O, origin of coordinates, coincident with the
center of the Earth; A, point of application of explosion momentum (with the
coordinate r0 on the X axis)).
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For the quantities r0 and V0 of interest, we usually have α >> 1 (δ << 1); therefore, computing the limit of ex-
pression (6), we obtain natural estimates characteristic of the HSO motion with a constant velocity (when α >> 1):
t
_
 r
_

0
 = 1 (or tr0

 = r0
 ⁄ V0). For example, we have tr0

 = 0.92 day for r0 = 1 mln km and V0 = 12 km/sec (when the
heliocentric velocities of the Earth and the HSO are coincident in direction), tr0

 = 0.26 day for the same r0 and V0 =
42 km/sec (the velocity vectors are perpendicular), and tr0

 = 0.15 day for V0 = 72 km/sec (the velocities are opposite
in direction).

Explosion Method of Diminishing an Asteroid-Comet Hazard. In the first step, in the process of explosion,
the body becomes depleted of its initial mass, which must be taken into account in determining its velocity V0

 ′ imme-
diately after the explosion. The HSO motion is described by variable-mass equations (Meshcherskii-type equations),
which, in Cartesian coordinates, have the form
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By virtue of the short duration of this step, the HSO coordinates here change only slightly compared to the
initial distance r0 to the Earth’s center. Therefore, it can be approximated that we have x C r0, y C 0, and g C gr0

 =
gE(RE

 ⁄ r0)2 = const over the period of action of the explosion (the vector r0 is assumed to be directed along the X
axis). Dividing (7) into M, integrating with respect to t, and discarding the small term gr0

tf in the first equation, for
the projections of the HSO velocity at the end of the first step we obtain
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where VX0
 and VY0

 are the projections of the HSO velocity at the initial instant of explosion and uX and uY are the
projections of the average velocity u of ejection of the mass M1 related to the initial M0 and final Mf masses as

Mf = M0 − M1 . (10)

The most accurate investigations of explosion action with allowance for the physical processes in the stages
of energy release and thermal and shock waves, up to the elastoplastic stage, are only possible by numerical methods.
The results of calculating the action of a nuclear explosion on HSOs and soils under ground conditions have been
given, for example, in [3–5]. Below, we roughly evaluate the ejected mass M1 and the average velocity u without al-
lowance for the ejection occurring in the earlier (thermal) stage. Based on the model concepts [6, 13] of the destruc-
tion of a body in a spherical shock wave propagating in the HSO material for the case of a high-velocity impact of
a missile with a charge upon the body and the explosion of the charge, from energy considerations we can obtain

E0χ = 8π 
n + 1

n − 1
 ηρ0εdRf

3
 . (11)

We have taken ρ0 = 7850, 3400, and 500 kg/m3 for iron and stony HSOs and for the substance of comet nuclei re-
spectively. At pressures higher than 106 kg/cm2, we have n = 3 and η = 1/6 [9, 13]. According to [13], εd is the en-
ergy of destruction "... when a medium will break down into small elastic solid particles which are similar to a
quasigas in properties ..." (for iron and stony bodies we can take εd = 105 J/kg [13]; for comet nuclei, judging from
the energy of phase transition of ice, this quantity is at least three times lower, i.e., εd = 0.3⋅105 J/kg). In connection
with the existing projects of penetration of a charge into the HSO substance (see, e.g., [14]) and for the reasons indi-
cated in [6], in subsequent calculations, we take χ = 0.30 for iron HSO and χ = 0.35 for stony ones; χ = 0.4 is taken
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for cometary ice. For these values of the physical parameters, Table 1 gives the energies Ed of complete destruction
of bodies of different size and model composition; these energies have been calculated from formula (11) when Rf =
d. It is seen that the destruction of large-size bodies (particularly stony and iron ones) will require multiple explosions,
i.e., such a method of neutralizing the hazard is not optimum.

Assuming that the entire mass M1 evaporated and broken down by the shock wave will be ejected and inte-
grating with respect to the part of the surface S of the shock wave covering a spherical HSO of diameter d, we obtain
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where β = 
4
3

 − Rfd is the destruction parameter.

A certain part ζ of the total energy E0 of explosion is transferred, as kinetic energy, to the substance M1
ejected with a rate u and to the body of mass Mf remaining after the explosion and obtaining the increment in ve-
locity ∆V:
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2
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From (8)–(13), it follows that
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; 0 < m < 1. The relative ejected mass is subsequently

computed from the formula M1
 ⁄ M0 = 1 − m. It is assumed that ζ ⁄ χ = const; in particular, we have ζ = 0.25 for stony

HSOs.
On the other hand, we can determine the vector ∆V, considering the second step of disturbed motion calcu-

lated from the safety conditions of a passive HSO flight by the Earth in the Kepler orbit after the explosion. The mo-
tion of the body in this step is also described by Eqs. (1) and (2), but now we have c = r0∆V sin ψ, i.e., c ≠ 0 now.
Thus, initial conditions have the form

TABLE 1. Energy of Complete Destruction of HSOs (Ed, Mtons) of Different Size and Composition

d0, m Stone Iron Cometary Ice

100 1.945 5.238 0.075

200 15.557 41.906 0.600

300 52.506 141.432 2.027

400 124.459 335.246 4.804

500 243.084 654.777 9.384

600 420.048 1131.454 16.215

700 667.021 1707.658 25.749

800 995.670 2681.965 38.436

900 1417.664 3818.658 54.726

1000 1944.669 5238.214 75.070

1500 6563.257 17,678.971 253.361

2000 15,557.354 41,905.709 600.560
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rt=0 = r0 ,   r
.
t=0 = VX0

 ′  ,   r0ϕ
.
t=0 = VY0

 ′  = ∆VY . (15)

The integral of system (1) and (2) is expressed in this case by the well-known formula

r = 
p

1 + e cos (ϕ − ϕ0)
 . (16)

Disregarding the HSO mass compared to the Earth’s mass and the radial component of the vector ∆V compared to the
initial velocity V0 of the body, with account for (15) we obtain
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The minimum distance to the HSO from the center of the Earth is equal to

rmin = 
p

1 + e
 = 

aλ2
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 , (18)

where a = µ ⁄ V0
 2 and λ = r0V0∆V sin ψ ⁄ µ. Solving the algebraic equation (18) for λ and using (15), we find the basic

relation determining the necessary conditions of explosion:
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µ
 is the kinematic parameter dependent on the initial conditions, the charac-

teristics of motion of an HSO, and its physical properties. It can be shown that the quantity k represents the dimen-
sionless (per unit mass) mechanical momentum k = If/(mI0) which is imparted to the body remaining intact (If is the

true value of the total momentum of this body and I0 = M0u∗ is the characteristic quantity). In the particular case of

an infinitesimal influence of the Earth, series expansion of the expression for k yields k = rminV0/(r0u∗) = rmin/(t0u∗),

which coincides with the results of [15, 16] for a constant HSO mass. The first and second terms under the radical
sign in the denominator of (19) correspond respectively to the kinetic energy of the substance ejected in explosion and
of the body undestroyed. As is easily shown, their maximum ratio (for m = 0.089) is no more than 0.57, so that the

denominator in (19) does not exceed 1.25√β ; therefore, for rough evaluations we can omit the factor and can set

k C − 
sin ψ ln m

√β
 .

Expression (19) written in dimensionless form determines the geometric and energy similarity laws charac-
terizing the degree of explosive destruction of bodies of different diameter as a function of the known initial condi-
tions and the required deflection of the orbit ("miss"), which are related by the parameter k. Figure 2 plots the
destruction parameter β, the relative size of the destroyed region Rf

 ⁄ d, the ratio E0 = Ed = (4/3 − β)3 of partial and
complete destruction, and the fraction m of the undestroyed mass versus k. The asymptotic values β = 4/3 and β =
1/3 correspond to the absence of the destruction of the HSO (m = 1) and its complete destruction (m = 0). An
analysis shows that the transfer of energy and momentum to an undestroyed body is optimum in character under cer-
tain conditions. This is clear, for example, from Fig. 3, which plots the following relative quantities as functions of
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m: E0
 ′ = E1 + Ef, the total explosion energy necessary for destroying the HSO completely (left-hand side of Eq.

(13)), E1 and Ef, the kinetic energies transferred to the ejected substance and the remaining body (1st and 2nd terms
on the right-hand side of (13)), Ef

 ⁄ E1, their ratio, and If
 ′ = If

 ⁄ I0 and k, the total and specific momenta imparted to
the remaining body. The true values of the energy E0, E1, and Ef in Fig. 3 are referred to the characteristic quantity
M0u∗2 ⁄ 2ζ. Curves 3, 4, and 5 have maxima of 0.717, 0.648, and 0.366 respectively for m values of 0.069, 0.219,
and 0.332.

The order of calculations is as follows (there can be other computational schemes). First we determine, from
formula (11), the explosion energy Ed necessary for destroying completely a body of prescribed diameter d. This di-
ameter and the Ed value obtained are those reference values for further computations. Next, assuming the kinematic
parameter k to be known (since r0, rmin, and V0 are known), we find the most important relative quantities partly
shown in Fig. 2 by numerical solution of the algebraic equation (19). Their multiplication by the corresponding refer-
ence values which are characteristic ones yields the physical parameters sought.

Table 2 gives results of evaluations of the charge power E0 ensuring the deflection of stony HSOs for a pre-
scribed distance L = rmin − RE from the Earth’s surface and the fraction m of the residual mass (only the data for V0

Fig. 2. Characteristics of the explosion G vs. values of the kinematic parameter
k: 1) G = β; 2) Rf

 ⁄ d; 3) E0
 ⁄ Ed; 4) m.

Fig. 3. Characteristics of motion of the substance ejected in explosion and the
remaining body N vs. degree of destruction m: 1) N = E0

 ′; 2) E1; 3) Ef; 4)
Ef

 ⁄ E1; 5) If
 ′; 6) k.

TABLE 2. Results of Calculation of the Charge Power (E0, Mtons) Necessary for Withdrawing Stony HSOs and the Residual
Mass of the Body (m) under Different Initial Conditions

r0⋅10−3,
km

L, km
V0 = 15 km/sec V0 = 30 km/sec

d, m
m

d, m
m

100 200 300 500 1000 100 200 300 500 1000

10 200 1.9 15.2 51.5 238.3 1906.7 0.0003 1.9 15.5 52.4 242.9 1942.8 10−6

25 200 1.6 13.0 43.9 203.6 1628.6 0.0183 1.6 14.6 49.3 228.3 1826.6 0.0025

50 200 1.3 10.0 34.0 157.6 1261.3 0.0899 1.6 12.4 42.0 194.6 1557.4 0.0277

100 500 0.9 6.8 23.1 107.0 856.4 0.2436 1.2 9.5 32.2 149.2 1194.3 0.1096

300 750 0.3 2.7 9.1 42.4 339.4 0.5945 0.6 4.5 15.3 70.9 567.3 0.4136

500 1000 0.2 1.7 5.6 26.0 208.4 0.7241 0.4 2.9 9.8 45.5 364.0 0.5725

1000 1750 0.1 0.9 3.0 13.7 110.4 0.8387 0.2 1.6 5.4 24.7 198.3 0.7350

1500 2500 0.1 0.6 2.1 9.7 77.8 0.8809 0.1 1.1 3.8 17.7 141.9 0.7996

5000 5000 0.03 0.2 0.8 3.5 27.7 0.9532 0.1 0.4 1.4 6.4 51.5 0.9176
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= 15 and 30 km/sec are tabulated). The optimum direction of explosion momentum (when L is maximum) has been
selected, which corresponds to the angle ψ = π/2.

It is clear from the table that if the HSO with an initial velocity of 30 km/sec and a diameter of 300 m is
exposed to an explosion of 5.4 Mtons at a distance of 106 km (approximately three distances to the Moon), the de-
flection of the trajectory will be no less than 1700 km. The residual relative mass will be equal to D0.74. Larger
bodies are more safely "deflected" for much longer distances. Thus, for an HSO of diameter 1 km (for the same
value of V0) to fly by the Earth at a distance of 5000 km, the required charge power must be 51 Mtons, and the
explosion must be initiated at a distance of 5⋅106 km. The residual mass m is equal to 0.92, i.e., the relative mass
loss in ejection proves to be smaller than that in the previous case. The dependences E0(r0) in a wider range of
variation are plotted on a logarithmic scale in Fig. 4 for different initial data (for V0 = 15, 30, 50, and 70 km/sec).
The horizontal asymptotic portions of the curves in their left-hand part (when r0 are comparatively small) correspond
to the energy of complete destruction of the HSO. These values change with size of the body d but are independent
of the withdrawal rmin and the velocity of the body V0. Otherwise, for large r0 (small k), the relative values of the
mass loss and the partial-destruction energy are minimum (see Fig. 2) and we can show, using the expansion of the
right-hand side of (19), that E0 → kEd/2√3  D 1 ⁄ r0, i.e., the curve on the right in the figure tends to a straight line
having a negative slope.

It should be noted that although most of the estimates are given here for stony bodies, the calculations can
easily be performed for other materials, too. Recalculation mainly holds true just for the characteristic quantity Ed,
which is most strongly dependent on the physical properties of an HSO.

Fig. 4. Explosion energies E0 necessary for withdrawing an HSO vs. initial dis-
tance r0 to the center of the Earth for different velocities [a) V0 = 15; b) 30;
c) 50; d) 70 km/sec] and size of the body [1) d = 100; 2) 250; 3) 500; 4) 750;
5) 1000 m; the lower curves in the bundle correspond to L = 0.5RE, the mid-
dle curves correspond to L = RE, and the upper ones correspond to L =
1.5RE]. E0, Mtons; r0, thousand km.
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Comparative Analysis of Explosion and Sublimation Methods of Withdrawing Comets. In the case of
early detection where the hazardous objects are comets at a large distance from the Earth (moving in the solar field
— early detection) the sublimation method of changing orbits is more promising; this method is based on artificial en-
hancement of cometary activity, which results in the additional jet thrust [17]. We compare the sublimation and explo-
sion methods of withdrawing in the opposite case — that of late detection of hazardous comets (motion in the solar
field). Let us consider each method successively, making two simplifying assumptions: we will disregard terrestrial at-
traction (this case has been considered above in the absence of action) and mass loss in the process of acting.

Explosion Method. As has been noted earlier, the first assumption (absence of gravity) means that the kine-
matic parameter in Eq. (19) is

k = 
rminV0

r0u
∗  = 

rmin

t0u
∗ = 

∆V

u
∗  , (20)

i.e., the comet nucleus moves by the Earth along the straight line.
Based on the second assumption (constancy of mass) we can set m = 1 − ∆m, where m << 1 (this inequality

is not universally true). Therefore, expanding the right-hand side of (19) in series in ∆m accurate to the first term and
taking into account that β → 4 ⁄ 3 in the limit, we obtain

k = 2 √3 sin ψ (Rf
 ⁄ d)

3
 = 2 √3 sin ψ (E0

 ⁄ Ed) . (21)

Here we have used the similarity relation (Rf
 ⁄ d)3 = E0

 ⁄ Ed.
Taking into account that we have Ed = E0Rf=d according to formula (11), we find an approximate expression

for the "miss" in the explosion method of withdrawing comets (asteroids) based on (20) and (21):

rmin = 
√3  ζt0E0

πu
∗ρ0Rn

 , (22)

where Rn = d/2 is the radius of the spherical comet nucleus.
Sublimation Method. Once the cometary activity has been initiated (according to the first assumptions), the

nucleus is acted upon by a single force F due to the sublimation effect. The distance from the nucleus to the Sun
can be assumed to be constant over the entire period of expected "fall" of the body on the Earth and to be equal to
1 au. Consequently, the temperature T of the nucleus and the pressure Pv of vapor efficiency at the subsolar point
are constant, too. Their values at the distance indicated are equal to T0 = 205 K and Pv0 = 0.35 N/m2, as the calcu-
lations show [17, 18]. The dependence of these quantities and the force F on the angle θ between the direction to
the Sun and the normal to the nucleus surface is the most pronounced near the angle θ = 90o [18]; at least at
0 ≤ θ ≤ θ1 = 85o, the above quantities can be assumed to be constant and equal to their values at the subsolar point.
The effective radius of the nucleus is equal to R1 = Rn sin θ1 = 0.9962Rn, i.e., it differs from its true value Rn only
slightly. Under the assumptions made and with allowance for the constant force F and mass M0 of the nucleus, from
the equation of motion we find the sought deflection from the Earth: rmin

 ′  = 0.5Ft0
2 ⁄ M0, where t0 = r0

 ⁄ V0. With al-
lowance for this fact, we obtain F C Pv0Sn, M0 = 4πρ0Rn

3/3, and

rmin
 ′  = 

3P0t0
2

8ρ0Rn
 . (23)

Comparison of the Methods. The efficiency of each method can be judged from the ratio of the ranges of
withdrawal (22) and (23) under equal conditions:

rmin
 ′

rmin
 = 

√3  πRn
2
P0u

∗
t0

8ζE0
 . (24)
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From formula (24), it is seen that the sublimation method is more advantageously used for withdrawal of
comparatively large nuclei (with a large area Sn = πRn

2), which are at a fairly large distance from the Earth or fly
slowly to it (t0 = r0

 ⁄ V is large). In this case we have rmin
 ′ /rmin > 1. The methods compared are equally accurate if

rmin
 ′ /rmin = 1. The explosion method of withdrawing is more efficient when rmin

 ′ /rmin < 1. Formal solution of the equa-
tion rmin

 ′ /rmin = 1 at different reasonable reserves of time t0 (and the velocity of the body V0 = 30 km/sec) shows that
the advantages of the explosion method manifest themselves for comparatively low-power charges. For example, the
nucleus radius is Rn = 1.3 km even for E0 = 1 kg and t0 = 0.1 day (r0 = 0.26 mln km), which corresponds to the
size of actual comets. However, the ranges of withdrawal using such charges are negligible (in the above case formula
(20) yields rmin = 8⋅10−3 km, which is much smaller than the Earth’s radius). Deflection of this body for an accept-
able distance requires much more intense explosions: based on (20), the required charge power for deflection, e.g., for
a distance of 200 km from the Earth’s surface, is 822 Mtons.

Effect of Enhancement of Shock Waves Formed in Celestial Bodies Hazardous to the Earth in the Case
of Their Explosive Destruction by a Moving Charge. Let us consider the influence of the relative velocity of a
moving charge on shock-wave processes occurring in the case of explosion action on a celestial body hazardous to the
Earth. We show that allowance for this fact makes it possible to increase the energy release and consequently to im-
prove the efficiency of action to an extent dependent on the body’s size.

The total explosion energy E0 is related to the pressure P on the front of a shock wave propagating from the
epicenter of the explosion by the well-known relation [6, 9, 10, 13]

E0 = 
4π

n − 1
 ηPR

3
 , (25)

where R is the distance from the epicenter of the explosion.
Formula (25) characterizes the attenuation of the shock wave in an unbounded medium in its propagation

from the epicenter. K. P. Stanyukovich, who studied the phenomenon of attenuation of a shock wave upon the impact
of a meteorite on the surface of a planet (Moon), i.e., under conditions similar to those considered, took no account
of a certain weakening of the shock wave due to the scatter of the gaseous explosion products to vacuum, assuming
that the wave propagates just in the same manner as in the case of a strong explosion in an unbounded medium. The
possibility of such an assumption has been substantiated by calculations in [11]. Showing that only a very small part
of the substance of the medium flows out of the explosion bowl over the period of traversal of the shock wave,
Zel’dovich et al. inferred that "... the outflow of a gas from the shock-wave front to vacuum makes the shock wave
weaker only slightly compared to the explosion in an unbounded medium."

The velocity of the shock-wave front D is related to the front pressure by the dependence [9, 11]

D
2
 = 

P

ρ0
2 


1

v0 − v




 = 

P

ρ0

 (n + 1) . (26)

Expressing the pressure P by D2 from relation (26) and substituting it into the formula for E0, we obtain

E0 = 
4π

n
2
 − 1

 ηρ0R0
3
D

2
 ,

(27)

where R0 is the effective radius of the exterior charge surface.
Upon the penetration of a moving charge into a stationary body and its explosion, the velocity of propagation

of the shock wave over the body in the direction of motion increases by the value of its velocity, whereas in the case
of the opposing HSO motion it increases by the total value w of the velocities of the charge and body. This makes it
possible, based on formula (27), relating the explosion energy to the shock-wave velocity, to introduce the coefficient
ξ characterizing the increase in the explosion energy in opposing motion of the charge and the body. We assume that
the shock wave has a nearly spherical shape and propagates in the direction of external normals to its surface. In this
case, the coefficient ξ of increase in the energy can be calculated as
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ξ = 
E0

 ′

E0

 = 
1

2πR0
2  ∫ 

0

π ⁄ 2

 2πR0
2
 sin ω 





D + w cos ω

D





2

 dω =  ∫ 
0

π ⁄ 2

 sin ω (1 + κ cos ω)2 dω , (28)

where κ = w/D is the relative velocity, which, with account for (27), is transformed to the form

κ = w √4πηρ0R0
3

E0 (n2
 − 1)

 . (29)

Computing the integral (28), we obtain the final expression for the coefficient of increase in the explosion energy:

 ξ = 1 + κ + 
κ2

3
 . (30)

From expressions (29) and (30), it is seen that the higher the velocity and radius of the charge and the density of the
HSO substance and the lower the energy release, the stronger the enhancement of the shock wave. We note that the
explosion energy increases for a high velocity of collision of the charge with the HSO body due to the fact that the
energy of the charge is liberated when it bites deeper into the body [6, 13]. Evaluating by formulas (25)–(29), we
should remember that only part of the energy χ dependent on explosion conditions, for example, on the degree of
penetration of the charge, and not the entire energy E0 goes into the shock wave in explosion, as a rule.

We evaluate the coefficient of enhancement of the shock wave for different cases. Let us consider a charge
with parameters E0 = 10 ktons and R0 = 1 m. For stony meteorites, from formulas (29) and (30) we obtain κ = 0.256
and ξ = 1.278 for the relative velocity w = 60 km/sec and κ = 0.128 and ξ = 1.133 for w = 30 km/sec. For the lower
explosion energies used for destruction of comparatively small celestial bodies, the enhancement of the shock wave is
even larger. According to the results of [6], the charge energy E0 = 0.014 kton (with utilization factor χ = 0.4) is nec-
essary for destroying, for example, an ice nucleus of density 500 kg/m3 and diameter 60 m (the Tunguska meteorite,
which is the nucleus of a minicomet (in accordance with the most substantiated hypothesis) had nearly the same size).
If we take the relative velocity w = 60 km/sec, we will have κ = 0.142 and ξ = 1.149. Figure 5 gives the quantity
ξ − 1 characterizing the increase in the energy release in three of the most typical media (stone, iron, and cometary
ice) as a function of the explosion power E0 for different values of the relative charge velocity w. Their analysis en-
ables us to infer that in the case of consideration of medium-size bodies (of the Tunguska-meteorite type) and smaller
objects representing a real asteroid-comet hazard the effect of enhancement of shock waves in explosion of a moving
charge is fairly large (of the order of several units); consequently, it must be taken into account in evaluating the force
action of the bodies indicated. As is clear from the figure, iron, whose density is higher, has the largest coefficient of
enhancement.

Fig. 5. Increase in the energy release ξ − 1 in HSOs of different composition
[a) stone; b) iron; c) ice] vs. explosion power E0 for different relative veloci-
ties of the charge: 1) w = 15; 2) 30; 3) 45; 4) 60; 5) 75 km/sec. E0, ktons.
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Conclusions. The calculations carried out show that the explosion energy necessary for transferring an HSO
to a safe trajectory is much lower than that necessary for destroying the body completely; the charges required for
withdrawal of iron HSOs are nearly 2.7 times larger (70 times smaller for ice nuclei) than those required for with-
drawal of stony bodies. Deflection of very large HSOs in the case of very small distances from them to the Earth will,
possibly, require a number of rockets, not a single one, launched at short time intervals. A comparison of the explo-
sion and sublimation methods of withdrawing comets moving in circumterrestrial space shows that the nuclei of typical
size are more efficiently deflected by explosion. However, the values of the "misses" obtained do not exceed the
Earth’s radius or several values of it even in the case of multiple explosions, which is the drawback of near-range in-
terception. The use of this method at a large distance — for the HSO motion in the solar field, when we can obtain
much wider ranges of withdrawal (including those of no less than 1 mln km) and safer explosion conditions seems
more promising and reliable. However, the sublimation method of withdrawing is more efficient at such distances from
the Earth in the case of comets [17].

The physical model used allows only for the disperse destruction of the HSO substance in the shock wave
and for the ejection of the mass destroyed but it does not take into account possible phenomena of large-block frag-
mentation, which are seemingly of importance for a large mass loss. However, since these phenomena are charac-
teristic of the later stage of propagation of the shock wave (following the evaporation stage), when its intensity
becomes noticeably weaker, the process of fragmentation of the body remaining after the evaporation will occur in the
presence of additional (evaporative) momentum; therefore, fragments will also receive the component of velocity in the
necessary direction, which will diminish the probability that they will fall on the Earth. This problem is to be studied
in greater detail in the future. Certain evaluations with allowance for the above factors have been performed earlier
(e.g., in [2]). We note that the accuracy of calculations is largely dependent on the physical constants used, whose real
values are unknown at present. Their determination, in particular, can be the objective of future space missions to as-
teroids and comets.

The described method of improving the efficiency of explosion action can successfully be used in any variants
of detection of HSOs. The high velocity of an HSO in relation to the velocity of the charge contributes, as a rule, to
its realization. In the case of late detection where the reserve of time is limited, the high velocity of the rockets them-
selves is a natural factor increasing energy release, too (which also contributes to the penetration of the charge). Since
an upper bound is set on this velocity for technical reasons, for comparatively large bodies with a diameter of several
hundred meters or more, whose neutralization requires accordingly higher charge powers, the effect in question yields,
apparently, a small increase in energy release in late detection. Protection against collision with such bodies, if they
are already near the Earth, is a difficult problem, irrespective of the method of neutralizing action. As far as bodies of
the Tunguska-meteorite type are concerned, allowance for the effect yields appreciable results [6]. For example, mini-
comets of diameter 30 m can be evaporated completely using a massive 6-ton body without any charge for a velocity
of 60 km/sec. In the case of partial destruction of bodies in the Earth’s field, the ranges of withdrawal of HSOs with
allowance for corrections to the enhancement of the shock wave prove to be nearly k times wider than those without
allowance for them.

Also, it is expedient to use the "velocity" factor described under the conditions where it is energy-profitable
for fully environmental reasons in realizing large energy release with smaller charges, since the level of radiation haz-
ard occurring in the vicinity of the Earth is reduced.

NOTATION

a, semiaxis of a hyperbola, km; c, area constant, km2/sec; d, HSO diameter, m; D, velocity of the shock wave,
m/sec; e, eccentricity of the orbit; E0, energy of explosion of a stationary charge, Mton; Ed and E0

 ′, energies of complete
and partial destruction of an HSO, Mtons; E1 and Ek, kinetic energies transferred to the ejected substance and the un-
destroyed body, Mtons; F, explosion-force vector, N; g, gE, and gr0

, free fall accelerations at an arbitrary point, on the
surface of the Earth, and at a distance r0 from its center, m/sec2; G, characteristics of destruction; I0, characteristic me-
chanical momentum, kg⋅m/sec; If, true value of the total momentum of an HSO, kg⋅m/sec; If

 ′, dimensionless total mo-
mentum of an HSO; k, kinematic parameter; L, deflection of the HSO trajectory from the Earth’s surface, km; M, HSO
mass, kg; ME, Earth’s mass, kg; M0, Mf, and M1, initial, final, and ejected mass of the body, kg; m, relative mass of
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an undestroyed body; n, polytropic index of an expanding gas; N, characteristics of motion of the ejected substance
and the remaining body; p, orbit parameter, km; P, Pv, and Pv0, pressure on the shock-wave front and pressures of
vapor efficiency in the comet nucleus at distances of r and 1 au from the Sun, N/m2; r, geocentric distance, m; r0,
vector determining the initial position of an HSO, km; rmin, minimum distance from the HSO to the center of the Earth,
km; RE, Earth’s radius, km; R, distance from the epicenter of explosion, m; Rf, distance from the epicenter of explosion
to the destruction boundary, m; R0, radius of the exterior charge surface, m; Rn, radius of the comet nucleus, m; Sn,
cross-sectional area of the comet nucleus, m2; T and T0, surface temperatures of the comet nucleus at the subsolar point
at distances of r and 1 au from the Sun, K; t, time, sec; tf, instant of completion of the explosion, sec; u and ux, uy,
average rate of ejection of the HSO substance and its projections onto the X and Y axes, m/sec; u∗, characteristic ve-
locity analogous to the velocity of sound in a condensed substance, m/sec; V and Vx, Vy, velocity of the body and its
projections onto the X and Y axes, m/sec; V0, initial geocentric velocity of an HSO, km/sec; V0

 ′, initial geocentric ve-
locity of an HSO with allowance for explosion momentum, km/sec; ∆V, increment in the HSO velocity, m/sec; v0 and
v, specific volumes of the medium in front of the shock wave and behind it, m3/kg; w, velocity of the charge in relation
to the HSO, km/sec; X and Y, coordinate axes; x, y, corresponding coordinates of an HSO, km; α, parameter charac-
terizing the energy constant; β, destruction parameter; δ, parameter characterizing the initial distance from the HSO to
the Earth; γ, gravitation constant of the Earth, N⋅m2/kg2; εd, destruction energy, J/kg; ζ, part of the explosion energy
transferred to the ejected substance; η, parameter dependent on the polytropic index of an expanding gas; κ, relative
velocity of the charge; λ, dimensionless parameter; ξ, coefficient of enhancement of the shock wave; ρ0, initial density
of the medium, kg/m3; χ, fraction of the explosion energy gone into the shock wave; ϕ, polar coordinate of an HSO,
rad; ϕ0, true anomaly of the explosion point, rad; ψ, angle between the vectors r0 and F, rad; ω, angle between the
normal at a point on the shock-wave surface and the direction of motion of the charge (integration constant), rad. Sub-
scripts: 0, initial; f, final; 1, ejected substance; d, destruction; min, minimum; n, nucleus; v, vapor.
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